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Motivation or why to explore GRB?

27-12-04 21:30h Detection of very bright
GRB (Superflare of SGR):

0.2s / Ex(250000y)!! /

d=50000Ly < Milky Way.

@ GRB are the most luminos known
objects in the universe

@ originate from cosmological
distances

@ indicate the birth of a black hole

o affect the atmosphere /
mass extinction.
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History and satellites

1960s: Vela — a group of satellites belonging to Project Vela
by the U.S. to monitor compliance with the
Partial Test Ban Treaty (PTBT) of 1963.
~-ray detectors should detect radiation emitted by
nuclear weapon tests.

1967:

Vela detects 1st GRB

after that:

1 GRB/day, in random directions, from
distant regions.

1973:

publication of results and beginning of
GRB-studies.
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After a lot of speculations involving BH, SNe and NS:
mid-1980s: consensus of bursts originating on NS inside our galaxy
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After a lot of speculations involving BH, SNe and NS:
mid-1980s: consensus of bursts originating on NS inside our galaxy
1991: space shuttle Atlantis launches Compton Gamma Ray
Observatory (CGRO) carrying the
Burst and Transient Source Experiment (BATSE).
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Achievements of BATSE:
isotropic distribution of GRBs;
GRBs divide in ’long’ and ’short’ bursts.

refined model: GRBs come from NSs in extended spherical halo
surrounding Milky Way J

But: halo should be huge (~ 800000Ly) and therefore
Andromeda’s halo should appear in the GRBs' distribution. }

problem

Only chance to solve the question of distance: find a counterpart
in other wavelengths to identify host!
But BATSE is too slow and has too poor resolution for that.
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BeppoSAX and Swift

1992-2003: Iltalian-dutch satellite BeppoSAX
GRB970228:
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BeppoSAX and Swift

1992-2003: Iltalian-dutch satellite BeppoSAX
GRB970228: fading X-ray / ’Afterglow’ ~~ optical counterpart
identified by ground-based telescopes ~~
Deep Imaging reveals host galaxy ... 'Revolution’

GRBs are extragalactic events, very distant
and in faint galaxies!

2004: Swift
able to follow GRB in <1min!
detection of short burst afterglows
vast amount of data to test models
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Special GRBs

GRB910711 shortest GRB of 6ms
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GRB 971208 (Trig. # 6526)
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Special GRBs

GRB910711 shortest GRB of 6ms

duration Y eoTRs (g a0
GRB971208 longest GRB of ~ 2000s -
duration P
GRB050904 most distant GRB with I T -
redshift z=6.18 “ ‘
GRB980425 closest GRB with z=0.0085 ool e

typical distances

Hubble-law v = Hp - r Ltz = r~ 4Gpc
(1pc=3-10'%m)
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Classification and models

bimodal histogram of duration
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Classification and models

bimodal histogram of duration
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Classification and models

Short G RBS Gamma-Ray Bursts (GRBs): The Long and Short of It

Long gamma-ray bull‘st Short gamma-ray h:rsl
collision and merging in NS-NS
or NS-BH Binaries
(often old NS)

‘ movie ns-mergers
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Classification and models

Gamma-Ray Bursts (GRBs): The Long and Short of It
Short GRBs

Long gamma-ray burst Short gamma-ray burst
(« iration)

collision and merging in NS-NS
or NS-BH Binaries

(often old NS)
Long GRBs

young, very massive progenitors
like O-stars or Wolf-Rayet-stars
end in Collapsar and explode in
Hypernova

‘ movie collapse ‘
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Temporal structure and variability

drastically and rapidly varying profiles with variations on a
time-scale §T < duration of GRB:
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Temporal structure and variability

drastically and rapidly varying profiles with variations on a
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drastically and rapidly varying profiles with variations on a
time-scale §T < duration of GRB:
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compact 'inner engine’
R; < c6T~3000km
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GRBs are most luminos objects of about 10%°L,
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— a huge luminosity requires a huge mass conversion

= Egrav & Erag most efficiently by

Akkretionsrate

Schwarzes _
very high state ’-:"' m:ﬁ: - ACCI’etion
schlanke Scheibe ‘
nigh state s 0s up to 42% for fast
[ S ] .
rotating BH!!
0.1
low state Bl ﬂt“ Standardscheibe
—— ) R
e “)1” o0.01
quiescent state
[E——]

12 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
L]

Total Energy and Luminosity

GRBs are most luminos objects of about 10%°L,

2 .
As| L=E— 2oy
— a huge luminosity requires a huge mass conversion
= Egrav & Erag most efficiently by

Akkretionsrate

—— .u et Accretion
. e os up to 42% for fast
s———_— rotating BH!!

E— u).., — o Accretion produces
- ¥ highest known
o — luminosities!
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Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

E“ exp (_E%) , for E < (o — B)Ey

N(E) = NO{
[(a — B)E]*PEP exp(B — a), for E > (o — B)Ey

black-body
2.82kT=E__ 4

peak

= 10" 1
W 407 1
z
10° 4
10* B
10° 4
10° 4
10'7 L L L L L
10° 10' 10° 10° 10°
E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

E~ for E < (a — B)Ep

N(E) = NO{ ’
[(a — B)E]*PEP exp(B — a), for E > (o — B)Ey

black-body
2.82kT=E__ 4

peak

= 10" 1
W 407 1
z
10° 4
10* B
10° 4
10° 4
10'7 L L L L L
10° 10' 10° 10° 10°
E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

E“ , for E < (o — B)E
N(E) = No (o = B)Eo
Efexp(B — ), for E > (a — B)E

black-body
2.82kT=E__ 4

peak

= 10" 1
W 407 1
z
10° 4
10* B
10° 4
10° 4
10'7 L L L L L
10° 10' 10° 10° 10°
E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

E“ , for E < (a— B)E
N(E) = No or E<(a=0k
ES , for E> (a—B)Ey
1o black-body
10° 2.82kT=E__ 1

peak

10 B
= 10" 1
W 407 1
z
10° 4
10* B
10° 4
10° 4
10'7 L L L L L
10° 10' 10° 10° 10°
E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E) E<b E®, for E < (a—P)E
No | o EP, for E > (a — B)Ey

black-body
2.82kT=E__ 4

peak

10 B
= 10" 1
W 407 1
z
10° 4
10* B
10° 4
10° 4
10'7 L L L L L
10° 10' 10° 10° 10°
E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E) E<b E®, for E < (a—P)E
No | o EP, for E > (a — B)Ey

black-body 7}
2.82kT=E__ 4

peak

" , GRB920602:
= 2
2w ; Epeni 2% 457keV
. ! o= —0.86
o i 8=-25
10° 10’ Ew[:ew 10° 10*

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E) E<b E®, for E < (a—P)E
No | o EP, for E > (a — B)Ey

black-body 7}
2.82kT=E__ 4

peak

GRB920602:
1 Epeni 2% 457keV
a=—0.86

] B=-25

10" F power law

N(E)N, [1

E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E) E<b E®, for E < (a—P)E
No | o EP, for E > (a — B)Ey

black-body
2.82kT=E__ 4 &

peak

1 non-thermal = optically
thin source (7 «1)

10" F power law

N(E)N, [1

E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E) E<b E®, for E < (a—P)E
No | o EP, for E > (a — B)Ey

black-body
2.82kT=E__ 4 &

peak

1 non-thermal = optically
thin source (7 «1)

10" F power law

N(E)N, [1

compactness problem

E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ]

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E) E<b E®, for E < (a—P)E
No | o EP, for E > (a — B)Ey

black-body
2.82kT=E__ 4 &

peak

1 non-thermal = optically
thin source (7 «1)

N(E)N, [1

compactness problem

1 solution?

E [keV]

15 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.

Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.

1)

2))

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~

2))

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~~ Lorentz-Contraction of Ayps by I':

2))

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~~ Lorentz-Contraction of Ayps by I':

Aobs = Asoflme & Esource = Efﬂbs-

2))

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~~ Lorentz-Contraction of Ayps by T

A E
Aobs = Sof”ce & Esource = %bs-

2.) change in apparent size of source:

R1

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~~ Lorentz-Contraction of Ayps by T

A E
Aobs = Sof”ce & Esource = %bs-

2.) change in apparent size of source:

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}

Relativistic motion 1

Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~~ Lorentz-Contraction of Ayps by T

A E
Aobs = Sof”ce & Esource = %bs-

2.) change in apparent size of source:

2nd photon emitted
(R2-R1)/v after 1st.

16 von 23 Patrick Huck = Gamma-ray bursts



Observations and Conclusions
[ ele}
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Emitted matter moves towards observer with relativistic velocity.
1.) blueshift ~~ Lorentz-Contraction of Ayps by T

A E
Aobs = Sof”ce & Esource = %bs-

2.) change in apparent size of source:
2nd photon emitted
(R2-R1)/v after 1st.

... but needs
(Rz-R1)/c less
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* Atobs = v - c
N\NNE
% T2 1 I>1p~1 1 ‘]
1= T 2(1-p)
R —R
= Doy ~ Ty ty\/\/\/\/\/’f 3

i.e. Radius R; of source has to be rewritten as| 2I%2¢6T |

Back to optical depth:

3D*F r-@+20) 1

—2«
Tfyfy,corr.:F fp o m = Ny — 1
N

With a ~ 2: ultra-relativistic I' 2100 to obtain an optically thin
source!!
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Fireball-model

Wolf-Rayet-star

Core collapse

w‘) black hole

No matter what — Collapsar of a

massive star or NS/NS-mergers —the
central compact object is likely to be
a black hole of several solar masses!

rotating BH +
accretion disk
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Fireball-model

Wolf-Rayet-star

Core collapse

to black hole
WR/O-star — NS/NS \

A8
Black Hole

liberated Egpay ~few Mo —~ free
energy in ms inside small volume

rotating BH +
accretion disk
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Fireball-model

Wolf-Rayet-star

WR/O—star - NS/NS Core collapse

u to black hole
Black Hole \

Egray ~ free energy
energy stored in
fireball
Result: conversion into v.'s and ]
grav. waves @ 1072 — 10_3Eg,av ermnay " rotating BH +
Qj~ accretion disk
\reba

into high temperature (kT>MeV)
fireball out of {e* y,p,n,..}
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WR/ O-star - NS/ NS Wolf-Rayet-star
J
Black Hole Core collapse

w‘) black hole

Egray ~~ free energy

U« energy stored in
o fireball
fireball /

erna rotating BH +
Qj:(‘ 4 accretion disk
\eba

10°° — 10°2erg remains trapped in
fireball and
produces non-thermal ~y-ray
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Rem.: SNe look similar but energy is emitted over months in
optical band
b GRB in seconds and mainly v-ray! ~~'Hypernova’

Def.: Eddington luminosity Lg = 1.25 - 1038,\%% above which
radiation pressure exceeds self-gravity.

38
Lg = 1%Le - 10 = 10°Lg
< 10 = Lgrs
= fireball expands and accelerates
(T o r)by converting E, < Eiin pary.
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Rem.: SNe look similar but energy is emitted over months in
optical band
b GRB in seconds and mainly v-ray! ~~'Hypernova’

Def.: Eddington luminosity L = 1.25 - 1038,\%% above which
radiation pressure exceeds self-gravity.

Lg =101, 10 = 100L, noz
< 10 = Lgrs

= fireball expands and accelerates

(T o r)by converting E, < Eiin pary.
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Questions

@ How long does acceleration last?

initial stages: fireball runs through
vacuum ~» I'pax = M’i‘)cz = const.
depends on initial baryonic load:
I'max > 1 possible for r ?
Mo < 1073M,, « OK due to
baryonic depletion near BH
(accretion and centrifugal forces) ...
but whole energy would be
converted before the fireball r
becomes optically thin!
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@ How to reconvert kinetic energy into radiation?

% fireball expansion and
acceleration

% coasting I’
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Questions

©® How long does acceleration last?

@ How to reconvert kinetic energy into radiation?

simple model: I
heavy progenitor = still near ISM.
= efficient reconversion by
interaction of fireball with external
matter (ISM) ~~ external shock

)
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@ How long does acceleration last?

@ How to reconvert kinetic energy into radiation?

external shock

fireball '—» external
= I' = const. up to Ef = Espept: medium
T
~ T2 2 _ 124 3 2 ' -
Er~T Mswept ¢~ = r 3MPext!dec € i synch. -
. ! radiation
= fireball decelerates in external r / ~
sho.ck'and emits synchrotron shockhont .
radiation —
= power-law!

/
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Questions

©® How long does acceleration last?

@ How to reconvert kinetic energy into radiation?

% fireball expansion and
acceleration

. I
% coasting I’ - const.
O ontock fading
lerating external shock S Q- continous fad!
% decelerating external shoc g;; — afterglow
Problems: ;if
- B~ 100G ; I" ~ 100 too low to
produce ~y-rays. Gec r

— no highly variable time-scale.
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— inhomogenous T

— shells with different velocities collide in internal shocks

— like 'electron cooling’ the gas cools down to a const.
homogenous I’

— which then runs into the external medium.
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Internal shocks

Internal shocks to explain time-variability and y-rays:

inhomogenous T’

shells with different velocities collide in internal shocks

like "electron cooling’ the gas cools down to a const.
homogenous I’

which then runs into the external medium.

internal collisions produce y-ray synchrotron radiation due to
B ~ 10°G and T max

rrd

[N

r r const.
S deceleration
L internal —» continous fading
QA
«9’0@@ shocks —»afterglow
&g ¥
GRB
(dec r
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Closing course of GRB
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FORMATION OF A GAMMA-RAY BURST could begin
either with the merger of two neutron stars or
—® with the collapse of a massive star. Both these
L. g events create a black hole with a disk of material
NEUTRON STARS around it. The hole-disk system, in turn, pumps
by out a jet of materfal at clase to the spee;nf light.
—® Shock waves within this material give off radiation.

BLOBS COLLIDE GAMMA
[internal shock ~ RAYS
. Wave ! |

SLOWER

' EASTER_ BLOA
BLOB |

BLACKHOLE W pisk
CENTRAL
ENGINE ——

*

PREBURST

Summary

JET COLLIDES WITH
AMBIENT MEDIUM
[external shock wave]

GAMMA-RAY EMISSION

MASSIVE
STAR Nl

AN
HYPERNOVA SCENARIO
JUAN VELASCO

Patrick Huck = Gamma-ray bursts
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