Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References

Gamma-ray bursts Seminar "Nuclei and the Cosmos"

Patrick Huck

Technical University Munich

30.01.2008

Overview •	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Over	view					

Motivation

Why to explore GRB?

- History and satellites Vela BATSE BeppoSAX and Swift
- Observations and Conclusions Special GRBs Classification and models

Temporal structure and variability Total Energy and Luminosity Spectrum Compactness problem Relativistic motion Fireball-model Course of FB-creation External shocks Internal shocks

5 Summary

27-12-04 21:30h Detection of very bright GRB (Superflare of SGR):

27-12-04 21:30h Detection of very bright GRB (Superflare of SGR): 0.2s /

27-12-04 21:30h Detection of very bright GRB (Superflare of SGR): 0.2s / E_{\odot} (250000y)!! /

• GRB are the most luminos known objects in the universe

- GRB are the most luminos known objects in the universe
- originate from cosmological distances

- GRB are the most luminos known objects in the universe
- originate from cosmological distances
- indicate the birth of a black hole

- GRB are the most luminos known objects in the universe
- originate from cosmological distances
- indicate the birth of a black hole
- affect the atmosphere / mass extinction.

Overview O	Motivation 0	History and satellites ●○○○	Observations and Conclusions	Fireball-model	Summary	References
Histo	ry and	satellites				

1960s: Vela – a group of satellites belonging to *Project Vela* by the U.S. to monitor compliance with the **Partial Test Ban Treaty (PTBT)** of 1963.

1960s: Vela – a group of satellites belonging to *Project Vela* by the U.S. to monitor compliance with the **Partial Test Ban Treaty (PTBT)** of 1963. γ -ray detectors should detect radiation emitted by nuclear weapon tests.

History and satellites

1960s: Vela – a group of satellites belonging to *Project Vela* by the U.S. to monitor compliance with the **Partial Test Ban Treaty (PTBT)** of 1963. γ -ray detectors should detect radiation emitted by nuclear weapon tests.

1967: Vela detects 1st GRB

History and satellites

1960s: Vela – a group of satellites belonging to *Project Vela* by the U.S. to monitor compliance with the **Partial Test Ban Treaty (PTBT)** of 1963. γ -ray detectors should detect radiation emitted by nuclear weapon tests.

1967:

Vela detects 1st GRB

after that:

 $1~\mbox{GRB}/\mbox{day},$ in random directions, from distant regions.

History and satellites

1960s: Vela – a group of satellites belonging to *Project Vela* by the U.S. to monitor compliance with the **Partial Test Ban Treaty (PTBT)** of 1963. γ -ray detectors should detect radiation emitted by nuclear weapon tests.

1967:

Vela detects 1st GRB

after that:

 $1~\mbox{GRB}/\mbox{day},$ in random directions, from distant regions.

1973:

publication of results and beginning of GRB-studies.

Overview O	Motivation 0	History and satellites ○●○○	Observations and Conclusions	Fireball-model	Summary	References
BATS	SE					

After a lot of speculations involving BH, SNe and NS: mid-1980s: consensus of bursts originating on NS inside our galaxy

After a lot of speculations involving BH, SNe and NS: mid-1980s: consensus of bursts originating on NS inside our galaxy 1991:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
0	0	0000	0000000000	000		
RAT	SF					

After a lot of speculations involving BH, SNe and NS:

- mid-1980s: consensus of bursts originating on NS inside our galaxy
 - 1991: space shuttle *Atlantis* launches **Compton Gamma Ray Observatory (CGRO)** carrying the **Burst and Transient Source Experiment (BATSE)**.

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
		0000				

Achievements of BATSE:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
		0000				

Achievements of BATSE: **isotropic distribution** of GRBs;

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
		0000				

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
		0000				

refined model: GRBs come from NSs in extended spherical halo surrounding Milky Way

But:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
		0000				

refined model: GRBs come from NSs in extended spherical halo surrounding Milky Way

But: halo should be huge (\sim 800000Ly) and therefore Andromeda's halo should appear in the GRBs' distribution.¹/₄

problem

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
		0000				

refined model: GRBs come from NSs in extended spherical halo surrounding Milky Way

But: halo should be huge (\sim 800000Ly) and therefore Andromeda's halo should appear in the GRBs' distribution.¹/₂

problem

Only chance to solve the question of distance: find a **counterpart** in other wavelengths to **identify host**!

But BATSE is too slow and has too poor resolution for that.

1992-2003: Italian-dutch satellite **BeppoSAX** GRB970228:

1992-2003: GRB970228: Italian-dutch satellite **BeppoSAX** fading X-ray / 'Afterglow' \rightsquigarrow optical counterpart identified by ground-based telescopes \rightsquigarrow

BeppoSAX and Swift

1992-2003: GRB970228:

Italian-dutch satellite **BeppoSAX** fading X-ray / 'Afterglow' ~> optical counterpart identified by ground-based telescopes \rightsquigarrow Deep Imaging reveals host galaxy ... 'Revolution'

Overview O	Motivation O	History and satellites ○○○●	Observations and Conclusions	Fireball-model	Summary	References
Bepp	oSAX a	and Swift				
	1992-200)3: Italian-c	lutch satellite Beppo	SAX		
G	GRB97022	28: fading X	K-ray / 'Afterglow' ~	ightarrow optical c	ounterpa	art

identified by ground-based telescopes ~~ Deep Imaging reveals host galaxy ... 'Revolution'

GRBs are extragalactic events, very distant and in faint galaxies!

Overview O	Motivation 0	History and satellites ○○○●	Observations and Conclusions	Fireball-model	Summary	References
Bepp	oSAX	and Swift				
(1992-20 GRB9702	03: Italian-du 28: fading X-	itch satellite Beppo ray / 'Afterglow' ^	SAX ⇔ optical c	ounterp	art

fading X-ray / 'Afterglow' → optical counterpart identified by ground-based telescopes → Deep Imaging reveals host galaxy ... 'Revolution'

GRBs are extragalactic events, very distant and in faint galaxies!

2004: Swift

Overview 0	Motivation 0	History and satellites ○○○●	Observations and Conclusions	Fireball-model 000	Summary	References
Bepp	oSAX	and Swift				
(1992-20	03: Italian-du	itch satellite Beppo	SAX	ountorn	ort

GRB970228: fading X-ray / 'Afterglow' → optical counterpart identified by ground-based telescopes → Deep Imaging reveals host galaxy ... 'Revolution'

GRBs are extragalactic events, very distant and in faint galaxies!

2004: Swift able to follow GRB in <1min!

Overview 0	Motivation 0	History and satellites ○○○●	Observations and Conclusions	Fireball-model	Summary	References
Bepp	oSAX a	and Swift				
	1992-20	03: Italian-du	itch satellite Beppo	SAX		

GRB970228: fading X-ray / 'Afterglow' → optical counterpart identified by ground-based telescopes → Deep Imaging reveals host galaxy ... 'Revolution'

GRBs are extragalactic events, very distant and in faint galaxies!

2004: **S**

Swift able to follow GRB in <1min! detection of short burst afterglows

Overview O	Motivation 0	History and satellites ○○○●	Observations and Conclusions	Fireball-model	Summary	References	
Bepp	oSAX	and Swift					
	1992-20	03: Italian-du	itch satellite Beppo	SAX			

GRB970228: fading X-ray / 'Afterglow' → optical counterpart identified by ground-based telescopes → Deep Imaging reveals host galaxy ... 'Revolution'

GRBs are extragalactic events, very distant and in faint galaxies!

2004: Swift

able to follow GRB in <1min! detection of short burst afterglows vast amount of data to test models

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References		
Special GRBs								

GRB910711 shortest GRB of 6ms duration

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References		
Special GRBs								

$\begin{array}{l} \mbox{GRB910711} & \mbox{shortest GRB of 6ms} \\ & \mbox{duration} \\ \mbox{GRB971208} & \mbox{longest GRB of} \sim 2000 s \\ & \mbox{duration} \\ \end{array}$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model 000	Summary	References
Speci	al GRE	ßs				

$\begin{array}{ll} \mbox{GRB910711} & \mbox{shortest GRB of 6ms} \\ \mbox{duration} \\ \mbox{GRB971208} & \mbox{longest GRB of} \sim 2000 \mbox{duration} \\ \mbox{GRB050904} & \mbox{most distant GRB with} \\ \mbox{redshift } z{=}6.18 \\ \end{array}$

Overview O	Motivation 0	History and satellites	Observations and Conclusions ●○○○○○○○○○	Fireball-model	Summary	References
Speci	al GRE	ßs				

GRB910711 shortest GRB of 6ms duration

 $\begin{array}{l} \mbox{GRB971208 longest GRB of} \sim 2000 \mbox{s} \\ \mbox{duration} \end{array}$

 $\begin{array}{c} \mbox{GRB050904} & \mbox{most distant GRB with} \\ & \mbox{redshift } z{=}6.18 \end{array}$

GRB980425 closest GRB with z=0.0085

GRB910711 shortest GRB of 6ms duration GRB971208 longest GRB of ~ 2000s duration

 $\begin{array}{l} {\sf GRB050904} \\ {\sf most \ distant \ GRB \ with} \\ {\sf redshift \ z=6.18} \end{array}$

GRB980425 closest GRB with z=0.0085

typical distances Hubble-law $v = H_0 \cdot r \stackrel{!}{=} cz \implies r \approx 4Gpc$ $(1pc=3 \cdot 10^{16}m)$

 $0.01-2s \rightsquigarrow$

0.01-2s ~>>

2-2000s ~→

$0.01\text{--}2s \rightsquigarrow \text{Short GRBs}$

2–2000s ↔

$0.01\text{--}2s \rightsquigarrow \text{Short GRBs}$

 $2\text{--}2000s \rightsquigarrow \text{Long GRBs}$

Short GRBs

collision and merging in NS-NS or NS-BH Binaries (often old NS)

movie ns-mergers

Classification and models

Short GRBs

collision and merging in NS-NS or NS-BH Binaries (often old NS)

Long GRBs

young, very massive progenitors like O-stars or Wolf-Rayet-stars end in Collapsar and explode in Hypernova

movie collapse

Temporal structure and variability

drastically and rapidly varying profiles with variations on a time-scale $\delta T \ll$ duration of GRB:

Temporal structure and variability

drastically and rapidly varying profiles with variations on a time-scale $\delta T \ll$ duration of GRB:

say $\delta T \approx 10$ ms: compact 'inner engine' $R_i < c\delta T \approx 3000$ km

drastically and rapidly varying profiles with variations on a time-scale $\delta T \ll$ duration of GRB:

say $\delta T \approx 10$ ms: compact 'inner engine' $R_i < c\delta T \approx 3000$ km

 \sim dim. of NS / BH!

GRBs are most luminos objects of about $10^{19}L_{\odot}$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References			
Total Energy and Luminosity									

GRBs are most luminos objects of about $10^{19} L_{\odot}$

As
$$L = \frac{E}{t} = \frac{mc^2}{t}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model 000	Summary	References		
Total Energy and Luminosity								

GRBs are most luminos objects of about $10^{19} L_{\odot}$

As
$$L = \frac{E}{t} = \frac{mc^2}{t} \propto \dot{m}$$

GRBs are most luminos objects of about $10^{19} L_{\odot}$

As
$$L = \frac{E}{t} = \frac{mc^2}{t} \propto \dot{m}$$

 \hookrightarrow a huge luminosity requires a huge mass conversion

Overview Motivation History and satellites Observations and Conclusions Fireball-model Summary References Total Energy and Luminosity

GRBs are most luminos objects of about $10^{19} L_{\odot}$

As
$$L = \frac{E}{t} = \frac{mc^2}{t} \propto \dot{m}$$

 \hookrightarrow a huge luminosity requires a huge mass conversion $\Longrightarrow E_{grav} \Leftrightarrow E_{rad}$ most efficiently by

Overview Motivation History and satellites Observations and Conclusions Fireball-model Summary References Total Energy and Luminosity

GRBs are most luminos objects of about $10^{19} L_{\odot}$

As
$$L = \frac{E}{t} = \frac{mc^2}{t} \propto \dot{m}$$

 \hookrightarrow a huge luminosity requires a huge mass conversion
 $\Longrightarrow E_{grav} \Leftrightarrow E_{rad}$ most efficiently by

Accretion

up to 42% for *fast* rotating BH!!

Overview Motivation History and satellites Observations and Conclusions Fireball-model Summary References Total Energy and Luminosity

GRBs are most luminos objects of about $10^{19} L_{\odot}$

As
$$L = \frac{E}{t} = \frac{mc^2}{t} \propto \dot{m}$$

 \hookrightarrow a huge luminosity requires a huge mass conversion
 $\Longrightarrow E_{grav} \Leftrightarrow E_{rad}$ most efficiently by

Accretion

up to 42% for *fast* rotating BH!!

Accretion produces highest known luminosities!

 $GRB = \gamma$ -rays in \sim few 10²keV range with energy tail $\nearrow \sim$ GeV.

Overview Motivation History and satellites Observations and Conclusions Fireball-model Summary References Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma \rightarrow e^+e^-$.

History and satellites Observations and Conclusions Overview Motivation Summary References 000000000000

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10²keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma \gamma \rightarrow e^+ e^-$.

History and satellites Overview Motivation Observations and Conclusions Summary References 000000000000

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10²keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma \gamma \rightarrow e^+ e^-$.

Assumption: burst with isotrop fluence F and distance D:

 $E_{tot} = 4\pi D^2 \cdot F$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma \rightarrow e^+e^-.$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

$$\gamma\gamma \to e^+e^-$$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma
ightarrow e^+e^-.$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma \rightarrow e^+e^-.$

Assumption: burst with isotrop fluence F and distance D:

$$\tau_{\gamma\gamma} =$$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma \rightarrow e^+e^-.$

Assumption: burst with isotrop fluence F and distance D:

$$\tau_{\gamma\gamma} = f_p \frac{R_i}{\lambda_{mfp}}$$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma \rightarrow e^+e^-.$

Assumption: burst with isotrop fluence F and distance D:

$$\tau_{\gamma\gamma} = f_p \frac{R_i}{\lambda_{mfp}} \quad \text{ with } \lambda_{mfp} = \frac{1}{\sigma_T n} \Rightarrow$$

Optical Depth / Opacity

 $GRB = \gamma$ -rays in \sim few 10^2 keV range with energy tail $\nearrow \sim$ GeV. \implies high energy photons \iff lower energy photons via

 $\gamma\gamma \rightarrow e^+e^-.$

Assumption: burst with isotrop fluence F and distance D:

$$\tau_{\gamma\gamma} = f_p \frac{R_i}{\lambda_{mfp}} \quad \text{with } \lambda_{mfp} = \frac{1}{\sigma_T n} \Rightarrow \tau_{\gamma\gamma} = f_p \cdot R_i \, \sigma_T \, n$$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References	
Black-Body							

$$\tau_{\gamma\gamma} = f_p \cdot \sigma_T \cdot \frac{3 \ D^2 \ F}{\overline{E}_{\gamma} \ (c\delta T)^2}$$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions ○○○○○○●○○○○	Fireball-model	Summary	References
Black-Body						

$$\tau_{\gamma\gamma}^{\text{Thompson}} \cdot \tau_{\gamma\gamma} = \tau_{p} \cdot \tau_{\tau} \cdot \frac{3 D^2 F}{\overline{E}_{\gamma} (c\delta T)^2}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model 000	Summary	References	
Black-Body							

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References	
Black-Body							

	Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model 000	Summary	References	
Black-Body								

Overview O	Motivation 0	History and satellites	Observations and Conclusions ○○○○○○●○○○○	Fireball-model	Summary	References	
Black-Body							

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References	
Black-Body							

 $\in \tau_{\gamma\gamma} \approx 10^{14} \gg 1$
Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Black	-Body					

 $\in \tau_{\gamma\gamma} \approx 10^{14} \gg 1$

 \leadsto huge τ results in no escaping $\gamma\text{-}\mathrm{ray}$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Black	-Body					

 $\in \tau_{\gamma\gamma} \approx 10^{14} \gg 1$

 $\stackrel{\rightsquigarrow}{\longrightarrow} \mbox{huge } \tau \mbox{ results in no} \\ \mbox{escaping } \gamma\mbox{-ray} \\ \mbox{ \Rightarrow thermal equilibrium }$

 $\in \tau_{\gamma\gamma} \approx 10^{14} \gg 1$

 \rightarrow huge τ results in no escaping γ -ray ⇒ thermal equilibrium ⇒ Black-Body-radiation when source becomes optically thin during expansion.

 $\in \tau_{\gamma\gamma} \approx 10^{14} \gg 1$

 $\stackrel{\rightsquigarrow}{\rightarrow} \text{huge } \tau \text{ results in no} \\ \text{escaping } \gamma \text{-ray} \\ \Rightarrow \text{thermal equilibrium} \\ \Rightarrow Black-Body-radiation \\ \text{when source becomes} \\ \text{optically thin during} \\ \text{expansion.} \\ \end{cases}$

But ...

$$N(E) = N_0 \begin{cases} E^{\alpha} \exp\left(-\frac{E}{E_0}\right), & \text{for } E < (\alpha - \beta)E_0\\ [(\alpha - \beta)E_0]^{\alpha - \beta}E^{\beta} \exp(\beta - \alpha), & \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

Band spectrum and Compactness problem

$$N(E) = N_0 \begin{cases} E^{\alpha} , & \text{for } E < (\alpha - \beta)E_0 \\ [(\alpha - \beta)E_0]^{\alpha - \beta}E^{\beta}\exp(\beta - \alpha), & \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

Band spectrum and Compactness problem

$$N(E) = N_0 \begin{cases} E^{\alpha} & , & \text{for } E < (\alpha - \beta)E_0 \\ & E^{\beta}\exp(\beta - \alpha), & \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

$$\frac{N(E)}{N_0} \begin{cases} E \ll E_0 \\ \longrightarrow \\ C \end{cases} E^{\alpha}, \quad \text{for } E < (\alpha - \beta)E_0 \\ \propto E^{\beta}, \qquad \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

$$\frac{N(E)}{N_0} \begin{cases} E \ll E_0 \\ \longrightarrow \\ C \end{cases} E^{\alpha}, \quad \text{for } E < (\alpha - \beta)E_0 \\ \propto E^{\beta}, \qquad \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

Band spectrum and Compactness problem

$$\frac{N(E)}{N_0} \begin{cases} E \ll E_0 \\ \longrightarrow \\ C \end{cases} E^{\alpha}, \quad \text{for } E < (\alpha - \beta)E_0 \\ \propto E^{\beta}, \qquad \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

Band spectrum and Compactness problem

$$\frac{N(E)}{N_0} \begin{cases} E \ll E_0 \\ \longrightarrow \\ C \end{cases} E^{\alpha}, \quad \text{for } E < (\alpha - \beta)E_0 \\ \propto E^{\beta}, \qquad \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

$$\frac{N(E)}{N_0} \begin{cases} E \ll E_0 \\ \longrightarrow \\ C \end{cases} E^{\alpha}, \quad \text{for } E < (\alpha - \beta)E_0 \\ \propto E^{\beta}, \qquad \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

15 von 23

Band spectrum and Compactness problem

$$\frac{N(E)}{N_0} \begin{cases} E \ll E_0 \\ \longrightarrow \\ C \end{cases} E^{\alpha}, \quad \text{for } E < (\alpha - \beta)E_0 \\ \propto E^{\beta}, \qquad \text{for } E > (\alpha - \beta)E_0 \end{cases}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	ivistic	motion 1				

Emitted matter moves towards observer with relativistic velocity.

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	ivistic	motion 1				

Emitted matter moves towards observer with relativistic velocity. 1.)

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	ivistic	motion 1				

Emitted matter moves towards observer with relativistic velocity. 1.) blueshift \rightsquigarrow

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	ivistic	motion 1				

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model 000	Summary	References
Relat	ivistic	motion 1				

$$\lambda_{obs} = rac{\lambda_{source}}{\Gamma} \iff E_{source} = rac{E_{obs}}{\Gamma}.$$

$$\lambda_{obs} = \frac{\lambda_{source}}{\Gamma} \iff E_{source} = \frac{E_{obs}}{\Gamma}$$

$$\lambda_{obs} = \frac{\lambda_{source}}{\Gamma} \iff E_{source} = \frac{E_{obs}}{\Gamma}$$

$$\lambda_{obs} = \frac{\lambda_{source}}{\Gamma} \iff E_{source} = \frac{E_{obs}}{\Gamma}$$

$$\lambda_{obs} = \frac{\lambda_{source}}{\Gamma} \iff E_{source} = \frac{E_{obs}}{\Gamma}$$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	ivistic	motion 2				

$$\star \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	ivistic	motion 2				

$$\bigstar \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$

$$\bigstar \Gamma^2 = \frac{1}{1 - \beta^2} \approx$$

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Relat	tivistic	motion 2				

$$\bigstar \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$
$$\bigstar \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1;}{\approx}$$

Overvie O	ew Motivation O	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rel	ativistic	motion 2				

$$\bigstar \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$
$$\bigstar \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx}$$

Overview 0	Motivation O	History and satellites	Observations and Conclusions	Fireball-model	Summary	References	
Rela	tivistic	motion 2					

 \mathbf{z}

$$\star \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$
$$\star \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)}$$

Overvie O	ew Motivation O	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rel	ativistic	motion 2				

$$\begin{split} \star \Delta t_{obs} &= \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c} \\ \star \Gamma^2 &= \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)} \\ \implies \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c} \end{split}$$

Overviev 0	w Motivation O	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rela	ativistic	motion 2				

$$\star \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$

$$\star \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)}$$

$$\Longrightarrow \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c}$$

i.e. Radius R_i of source has to be rewritten as $2\Gamma^2 c\delta T$.

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rola	tivictic	motion 2				

$$\begin{split} \star \Delta t_{obs} &= \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c} \\ \star \Gamma^2 &= \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)} \\ \implies \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c} \end{split}$$

$$\tau_{\gamma\gamma} = f_{p} \cdot \sigma_{T} \cdot \frac{3 D^{2} F}{\overline{E}_{\gamma} (c \delta T)^{2}}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rola	tivictic	motion 2				

$$\begin{split} \star \Delta t_{obs} &= \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c} \\ \star \Gamma^2 &= \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)} \\ \implies \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c} \end{split}$$

$$\tau_{\gamma\gamma,corr.} = \Gamma^{-2\alpha} f_p \cdot \sigma_T \cdot \frac{3 \ D^2 \ F}{\overline{E}_{\gamma} \ (\ c\delta T)^2}$$
$$f_p \propto (\underbrace{E_{obs}^{-\alpha}}_{\propto N(E)})^2 = (\Gamma E_{source})^{-2\alpha}.$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rola	tivictic	motion 2				

$$\begin{split} \star \Delta t_{obs} &= \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c} \\ \star \Gamma^2 &= \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)} \\ \implies \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c} \end{split}$$

$$\tau_{\gamma\gamma,corr.} = \Gamma^{-2\alpha} f_p \cdot \sigma_T \cdot \frac{3 D^2 F}{\overline{E}_{\gamma} (2\Gamma^2 c \delta T)^2}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rola	tivictic	motion 2				

$$\star \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$

$$\star \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)}$$

$$\Longrightarrow \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c}$$

$$\tau_{\gamma\gamma,corr.} = \Gamma^{-2\alpha} f_p \cdot \sigma_T \cdot \frac{3 D^2 F}{\overline{E}_{\gamma} (2\Gamma^2 c \delta T)^2} = \Gamma^{-(4+2\alpha)} \tau_{\gamma\gamma}$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rola	tivictic	motion 2				

$$\star \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$

$$\star \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)}$$

$$\Longrightarrow \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c}$$

$$\tau_{\gamma\gamma,corr.} = \Gamma^{-2\alpha} f_p \cdot \sigma_T \cdot \frac{3 D^2 F}{\overline{E}_{\gamma} (2\Gamma^2 c \delta T)^2} = \Gamma^{-(4+2\alpha)} \tau_{\gamma\gamma} \stackrel{!}{=} 1$$

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Rola	tivictic	motion 2				

$$\star \Delta t_{obs} = \frac{R_2 - R_1}{v} - \frac{R_2 - R_1}{c}$$

$$\star \Gamma^2 = \frac{1}{1 - \beta^2} \overset{\Gamma \gg 1; \beta \approx 1}{\approx} \frac{1}{2(1 - \beta)}$$

$$\Longrightarrow \Delta t_{obs} \approx \frac{R_2 - R_1}{2\Gamma^2 c}$$

$$\tau_{\gamma\gamma,\text{corr.}} = \Gamma^{-2\alpha} f_p \cdot \sigma_T \cdot \frac{3 D^2 F}{\overline{E}_{\gamma} (2\Gamma^2 c \delta T)^2} = \Gamma^{-(4+2\alpha)} \tau_{\gamma\gamma} \stackrel{!}{=} 1$$

With $\alpha\sim$ 2: ultra-relativistic $\Gamma\gtrsim$ 100 to obtain an optically thin source!!
Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References		
Constraints to a model								

huge energy deposit and conversion

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References	
Con	straints	to a model					

- huge energy deposit and conversion
- Inon-thermal (power-law) spectrum

(Overview	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
	Conct	rainte t	ia a model				

- huge energy deposit and conversion
- Inon-thermal (power-law) spectrum
- In high energy photons

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References	
Constraints to a model							

- huge energy deposit and conversion
- Inon-thermal (power-law) spectrum
- In the second second
- ultra-relativistic motion of matter

	Overview O	Motivation O	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
Constraints to a model							

- huge energy deposit and conversion
- Inon-thermal (power-law) spectrum
- In high energy photons
- ultra-relativistic motion of matter

FIREBALL-model

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model ●○○	Summary	References
Fireb	all-moo	del				

No matter what – Collapsar of a massive star or NS/NS-mergers –

No matter what – Collapsar of a massive star or NS/NS-mergers –the central compact object is likely to be a **black hole** of several solar masses!

Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model ●○○	Summary	References	
Fireball-model							

WR/O-star − NS/NS ↓ Black Hole

liberated $E_{grav} \sim \text{few } M_{\odot} \curvearrowright$ free energy in ms inside small volume

WR/O-star – NS/NS \downarrow Black Hole \downarrow $E_{grav} \rightsquigarrow$ free energy

Result: conversion into ν_e 's and grav. waves $\oplus 10^{-2} - 10^{-3}E_{grav}$ into high temperature (kT \gtrsim **MeV**) fireball out of {e[±], γ , p, n,...}

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Rem.: SNe look similar but energy is emitted over months in optical band $\frac{1}{2}$ GRB in seconds and mainly γ -ray! \rightsquigarrow '**Hypernova**'

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Rem.: SNe look similar but energy is emitted over months in optical band $\frac{1}{2}$ GRB in seconds and mainly γ -ray! \rightsquigarrow 'Hypernova'

Def.: Eddington luminosity $L_E = 1.25 \cdot 10^{38} \frac{M}{M_{\odot}} \frac{\text{erg}}{\text{s}}$ above which radiation pressure exceeds self-gravity.

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Rem.: SNe look similar but energy is emitted over months in optical band $\frac{1}{2}$ GRB in seconds and mainly γ -ray! \rightsquigarrow '**Hypernova**'

Def.: Eddington luminosity $L_E = 1.25 \cdot 10^{38} \frac{M}{M_{\odot}} \frac{erg}{s}$ above which radiation pressure exceeds self-gravity.

$$L_E = \frac{10^{38}}{10^{33}} L_{\odot} \cdot 10 = 10^6 L_{\odot}$$
$$\ll 10^{19} L_{\odot} = L_{GRB}$$

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Rem.: SNe look similar but energy is emitted over months in optical band $\frac{1}{2}$ GRB in seconds and mainly γ -ray! \rightsquigarrow 'Hypernova'

Def.: Eddington luminosity $L_E = 1.25 \cdot 10^{38} \frac{M}{M_{\odot}} \frac{erg}{s}$ above which radiation pressure exceeds self-gravity.

$$\begin{split} \mathcal{L}_{\mathcal{E}} &= \frac{10^{38}}{10^{33}} \mathcal{L}_{\odot} \cdot 10 = 10^{6} \mathcal{L}_{\odot} \\ &\ll 10^{19} \mathcal{L}_{\odot} = \mathcal{L}_{GRB} \\ &\Longrightarrow \text{fireball expands and accelerates} \\ (\Gamma \propto r) \text{by converting } \mathcal{E}_{\gamma} \Leftrightarrow \mathcal{E}_{kin, bary.} \end{split}$$

Def.: Eddington luminosity $L_E = 1.25 \cdot 10^{38} \frac{M}{M_{\odot}} \frac{erg}{s}$ above which radiation pressure exceeds self-gravity.

$$\begin{split} \mathcal{L}_E &= \frac{10^{38}}{10^{33}} \mathcal{L}_{\odot} \cdot 10 = 10^6 \mathcal{L}_{\odot} \\ &\ll 10^{19} \mathcal{L}_{\odot} = \mathcal{L}_{GRB} \\ &\Longrightarrow \text{fireball expands and accelerates} \\ (\Gamma \propto r) \text{by converting } \mathcal{E}_{\gamma} \Leftrightarrow \mathcal{E}_{kin, bary}. \end{split}$$

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

ŕ

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

How long does acceleration last?

★ fireball expansion and acceleration

r

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

• How long does acceleration last?

initial stages: fireball runs through vacuum \rightsquigarrow

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				$\odot \odot \odot$		

How long does acceleration last?

initial stages: fireball runs through vacuum $\rightsquigarrow \Gamma_{max} = \frac{E_0}{M_0c^2} = \text{const.}$ depends on initial baryonic load:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				$\odot \odot \odot$		

How long does acceleration last?

initial stages: fireball runs through vacuum $\rightsquigarrow \Gamma_{max} = \frac{E_0}{M_0c^2} = \text{const.}$ depends on initial baryonic load:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

How long does acceleration last?

initial stages: fireball runs through vacuum $\rightsquigarrow \Gamma_{max} = \frac{E_0}{M_0c^2} = \text{const.}$ depends on initial baryonic load: $\Gamma_{max} \gg 1$ possible for $M_0 \ll 10^{-3} M_{\odot} \leftarrow$

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

How long does acceleration last?

initial stages: fireball runs through vacuum $\rightsquigarrow \Gamma_{max} = \frac{E_0}{M_0c^2} = \text{const.}$ depends on initial baryonic load: $\Gamma_{max} \gg 1$ possible for $M_0 \ll 10^{-3} M_{\odot} \leftarrow \text{OK}$ due to baryonic depletion near BH (accretion and centrifugal forces) ...

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

How long does acceleration last?

initial stages: fireball runs through vacuum $\rightsquigarrow \Gamma_{max} = \frac{E_0}{M_0c^2} = \text{const.}$ depends on initial baryonic load: $\Gamma_{max} \gg 1$ possible for $M_0 \ll 10^{-3} M_{\odot} \leftarrow \text{OK}$ due to baryonic depletion near BH (accretion and centrifugal forces) ... but whole energy would be converted before the fireball becomes optically thin!

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- O How to reconvert kinetic energy into radiation?

- ★ fireball expansion and acceleration
- \star coasting Γ

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?

```
simple model:
heavy progenitor \Rightarrow still near ISM.
```


Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- O How to reconvert kinetic energy into radiation?

simple model: heavy progenitor \Rightarrow still near ISM. \implies efficient reconversion by interaction of fireball with external matter (ISM)

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?

simple model: heavy progenitor \Rightarrow still near ISM. \implies efficient reconversion by interaction of fireball with external matter (ISM) \rightsquigarrow external shock

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- When to reconvert kinetic energy into radiation?

external shock

 $\Rightarrow \Gamma = \text{const.}$ up to $E_f \approx E_{swept}$:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- When to reconvert kinetic energy into radiation?

external shock

$$\Rightarrow \Gamma = \text{const. up to } E_f \approx E_{swept}:$$

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- When to reconvert kinetic energy into radiation?

external shock

$$\Rightarrow \Gamma = \text{const. up to } E_f \approx E_{swept}:$$

$$E_f \approx \Gamma^2 m_{swept} c^2 = \Gamma^2 \frac{4}{3} \pi \rho_{ext} r_{dec}^3 c^2$$

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- When to reconvert kinetic energy into radiation?

external shock

$$\Rightarrow \Gamma = \text{const. up to } E_f \approx E_{swept}:$$
$$E_f \approx \Gamma^2 m_{swept} c^2 = \Gamma^2 \frac{4}{3} \pi \rho_{ext} r_{dec}^3 c^2$$

 \Rightarrow fireball decelerates in external shock and

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?

external shock

$$\Rightarrow \Gamma = \text{const. up to } E_f \approx E_{swept}:$$

$$E_f \approx \Gamma^2 m_{swept} c^2 = \Gamma^2 \frac{4}{3} \pi \rho_{ext} r_{dec}^3 c^2$$

 \Rightarrow fireball decelerates in external shock and emits synchrotron radiation

 \Rightarrow power-law!

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?
- ★ fireball expansion and acceleration
- \star coasting Γ
- ★ decelerating external shock

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?
- ★ fireball expansion and acceleration
- \star coasting Γ
- ★ decelerating external shock

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?
- ★ fireball expansion and acceleration
- \star coasting Γ
- ★ decelerating external shock

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Questions

- How long does acceleration last?
- 2 How to reconvert kinetic energy into radiation?
- ★ fireball expansion and acceleration
- \star coasting Γ
- \star decelerating external shock
- Problems:

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Questions

- How long does acceleration last?
- When to reconvert kinetic energy into radiation?
- ★ fireball expansion and acceleration
- \star coasting Γ
- \star decelerating external shock
- Problems:
 - $B\sim 100\,G$; $\Gamma\sim 100$ too low to produce $\gamma\text{-rays}.$

Overview	Motivation	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
				000		

Questions

- How long does acceleration last?
- When to reconvert kinetic energy into radiation?
- ★ fireball expansion and acceleration
- \star coasting Γ
- ★ decelerating external shock
- Problems:
 - $B\sim 100\,G$; $\Gamma\sim 100$ too low to produce $\gamma\text{-rays}.$
 - no highly variable time-scale.

Overview 0	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model ○○●	Summary	References
Interi	nal sho	cks				

 $\, \hookrightarrow \, \operatorname{inhomogenous} \, \Gamma$

 $\, \hookrightarrow \, \operatorname{inhomogenous} \, \Gamma$

 \hookrightarrow shells with different velocities collide in internal shocks

- $\, \hookrightarrow \, \operatorname{inhomogenous} \, \Gamma$
- \hookrightarrow shells with different velocities collide in $internal\ shocks$
- \hookrightarrow like 'electron cooling' the gas cools down to a const. homogenous Γ

- $\, \hookrightarrow \, \operatorname{inhomogenous} \, \Gamma$
- \hookrightarrow shells with different velocities collide in $internal\ shocks$
- \hookrightarrow like 'electron cooling' the gas cools down to a const. homogenous Γ
- \hookrightarrow which then runs into the external medium.

- $\, \hookrightarrow \, \operatorname{inhomogenous} \, \Gamma$
- \hookrightarrow shells with different velocities collide in $internal\ shocks$
- \hookrightarrow like 'electron cooling' the gas cools down to a const. homogenous Γ
- \hookrightarrow which then runs into the external medium.
- \hookrightarrow internal collisions produce y-ray synchrotron radiation due to $B\sim 10^5\,G$ and Γ_{max}

Closing course of GRB

	Overview O	Motivation 0	History and satellites	Observations and Conclusions	Fireball-model	Summary	References
References							

- P. Meszaros, *Gamma-ray bursts*,
 Rep. Prog. Phys. **69** (2006) 2259-2321
- T. Piran, *Gamma-ray bursts and the fireball model*, Phys. Rep. 314 (1999) 575-667
- P. Meszaros and M.J. Rees, *Relativistic fireballs: energy conversion and time-scales*, Mon. Not. R. astr. Soc. (1992), Short Communication, 41P-43P
- P. Meszaros and M.J. Rees, Relativistic fireballs and their impact on external matter: models for cosmological Gamma-ray bursts, Astrophys. Journal, 405:278-284, 1993
- http://www.wissenschaft-online.de/astrowissen