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Motivation or why to explore GRB?
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Motivation or why to explore GRB?

27-12-04 21:30h Detection of very bright
GRB (Superflare of SGR):
0.2s / E⊙(250000y)!! /
d=50000Ly < Milky Way.

GRB are the most luminos known
objects in the universe

originate from cosmological
distances

indicate the birth of a black hole

affect the atmosphere /
mass extinction.
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History and satellites

1960s: Vela – a group of satellites belonging to Project Vela

by the U.S. to monitor compliance with the
Partial Test Ban Treaty (PTBT) of 1963.
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History and satellites

1960s: Vela – a group of satellites belonging to Project Vela

by the U.S. to monitor compliance with the
Partial Test Ban Treaty (PTBT) of 1963.
γ-ray detectors should detect radiation emitted by
nuclear weapon tests.

1967:
Vela detects 1st GRB
after that:
1 GRB/day, in random directions, from
distant regions.
1973:
publication of results and beginning of
GRB-studies.
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BATSE

After a lot of speculations involving BH, SNe and NS:
mid-1980s: consensus of bursts originating on NS inside our galaxy

1991: space shuttle Atlantis launches Compton Gamma Ray
Observatory (CGRO) carrying the
Burst and Transient Source Experiment (BATSE).
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Achievements of BATSE:
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Achievements of BATSE:
isotropic distribution of GRBs;
GRBs divide in ’long’ and ’short’ bursts.

refined model: GRBs come from NSs in extended spherical halo
surrounding Milky Way

But: halo should be huge (∼ 800000Ly) and therefore
Andromeda’s halo should appear in the GRBs’ distribution.	
problem

Only chance to solve the question of distance: find a counterpart
in other wavelengths to identify host!
But BATSE is too slow and has too poor resolution for that.
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BeppoSAX and Swift

1992-2003: Italian-dutch satellite BeppoSAX
GRB970228: fading X-ray / ’Afterglow’  optical counterpart

identified by ground-based telescopes  
Deep Imaging reveals host galaxy ... ’Revolution’

GRBs are extragalactic events, very distant
and in faint galaxies!

2004: Swift
able to follow GRB in <1min!
detection of short burst afterglows
vast amount of data to test models
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Special GRBs

GRB910711 shortest GRB of 6ms
duration

GRB971208 longest GRB of ∼ 2000s
duration

GRB050904 most distant GRB with
redshift z=6.18

GRB980425 closest GRB with z=0.0085

typical distances

Hubble-law v = H0 · r
!
= cz =⇒ r ≈ 4Gpc

(1pc=3 · 1016m)
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Classification and models

Short GRBs

collision and merging in NS-NS
or NS-BH Binaries
(often old NS)

movie ns-mergers
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Classification and models

Short GRBs

collision and merging in NS-NS
or NS-BH Binaries
(often old NS)

Long GRBs

young, very massive progenitors
like O-stars or Wolf-Rayet-stars
end in Collapsar and explode in
Hypernova

movie collapse
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Temporal structure and variability

drastically and rapidly varying profiles with variations on a
time-scale δT ≪ duration of GRB:
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Temporal structure and variability

drastically and rapidly varying profiles with variations on a
time-scale δT ≪ duration of GRB:

say δT ≈10ms:
compact ’inner engine’
Ri < cδT≈3000km

∼ dim. of NS / BH!

11 von 23 Patrick Huck Gamma-ray bursts



Overview Motivation History and satellites Observations and Conclusions Fireball-model Summary References

Total Energy and Luminosity

GRBs are most luminos objects of about 1019L⊙
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Total Energy and Luminosity

GRBs are most luminos objects of about 1019L⊙

As L = E
t

= mc2

t
∝ ṁ

→֒ a huge luminosity requires a huge mass conversion
=⇒ Egrav ⇔ Erad most efficiently by

Accretion

up to 42% for fast

rotating BH!!

Accretion produces
highest known
luminosities!
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Optical Depth / Opacity

GRB = γ-rays in ∼few 102keV range with energy tail ր∼GeV.
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Black-Body

⇚ τγγ ≈ 1014 ≫ 1
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Band spectrum and Compactness problem

... Band et al. introduced an excellent phenomenological fit:

N(E ) = N0

{

Eα exp
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)

, for E < (α− β)E0
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α−βEβ exp(β − α), for E > (α− β)E0
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Relativistic motion 2

⋆ ∆tobs =
R2 − R1

v
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R2 − R1
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Back to optical depth:

τγγ,corr .= Γ
−2αfp · σT ·

3 D2 F

Eγ (2Γ2cδT )2
= Γ

−(4+2α)τγγ
!
= 1

With α ∼ 2: ultra-relativistic Γ &100 to obtain an optically thin
source!!
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Fireball-model

No matter what – Collapsar of a
massive star or NS/NS-mergers –the
central compact object is likely to be
a black hole of several solar masses!
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Fireball-model

WR/O-star – NS/NS
⇓

Black Hole

liberated Egrav ∼few M⊙ y free
energy in ms inside small volume
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Fireball-model

WR/O-star – NS/NS
⇓

Black Hole

↓
Egrav  free energy

Result: conversion into νe ’s and
grav. waves ⊕ 10−2 − 10−3Egrav

into high temperature (kT&MeV)
fireball out of {e±,γ,p,n,...}
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Fireball-model

WR/O-star – NS/NS
⇓

Black Hole

↓
Egrav  free energy

⇓
fireball

1050 − 1052erg remains trapped in
fireball and
produces non-thermal γ-ray
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optical band	GRB in seconds and mainly γ-ray!  ’Hypernova’
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——————————————————————
initial stages: fireball runs through

vacuum  Γmax = E0
M0c2 = const.

depends on initial baryonic load:
Γmax ≫ 1 possible for
M0 ≪ 10−3M⊙ ← OK due to
baryonic depletion near BH
(accretion and centrifugal forces) ...
but whole energy would be
converted before the fireball
becomes optically thin!
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⋆ fireball expansion and
acceleration
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Questions

1 How long does acceleration last?

2 How to reconvert kinetic energy into radiation?

——————————————————————

external shock

⇒ Γ = const. up to Ef ≈ Eswept :

Ef ≈ Γ
2msweptc

2 = Γ
2 4

3πρextr
3
decc

2

⇒ fireball decelerates in external
shock and emits synchrotron
radiation
⇒ power-law!
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——————————————————————

⋆ fireball expansion and
acceleration

⋆ coasting Γ

⋆ decelerating external shock
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Questions

1 How long does acceleration last?

2 How to reconvert kinetic energy into radiation?

——————————————————————

⋆ fireball expansion and
acceleration

⋆ coasting Γ

⋆ decelerating external shock

Problems:

– B ∼ 100G ; Γ ∼ 100 too low to
produce γ-rays.
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Questions

1 How long does acceleration last?

2 How to reconvert kinetic energy into radiation?

——————————————————————

⋆ fireball expansion and
acceleration

⋆ coasting Γ

⋆ decelerating external shock

Problems:

– B ∼ 100G ; Γ ∼ 100 too low to
produce γ-rays.

– no highly variable time-scale.
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Internal shocks

Internal shocks to explain time-variability and y-rays:

→֒ inhomogenous Γ
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Internal shocks

Internal shocks to explain time-variability and y-rays:

→֒ inhomogenous Γ

→֒ shells with different velocities collide in internal shocks
→֒ like ’electron cooling’ the gas cools down to a const.

homogenous Γ
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Internal shocks to explain time-variability and y-rays:

→֒ inhomogenous Γ

→֒ shells with different velocities collide in internal shocks
→֒ like ’electron cooling’ the gas cools down to a const.

homogenous Γ

→֒ which then runs into the external medium.
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Internal shocks

Internal shocks to explain time-variability and y-rays:

→֒ inhomogenous Γ

→֒ shells with different velocities collide in internal shocks
→֒ like ’electron cooling’ the gas cools down to a const.

homogenous Γ

→֒ which then runs into the external medium.
→֒ internal collisions produce y-ray synchrotron radiation due to

B ∼ 105G and Γmax
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Closing course of GRB
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